Pulmonary Arterial Hypertension

Mark T. Gladwin, MD
Director, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute
Chairman, Department of Medicine
University of Pittsburgh, Institute for Transfusion Medicine, Hemophilia Center of Western Pennsylvania, and UPMC
Outline: Pulmonary Arterial Hypertension

- How does PAH present and how to diagnose in the clinic?
- The echo shows an elevated PA pressure. Do I have to do a cath?
- How do I choose initial therapy for PAH?
- How do I adjust therapy for PAH?
Referred patient from Ohio

- 18 year old with severe dyspnea, syncopal events, cyanotic lips and peripheral edema
- HbSS
- Rare painful crises or ACS; on chronic simple transfusions; no narcotics
- WBC 15.8; Hb 11.8; Plat 340; LDH 662; Haptoglobin <5.8; HbS 30%; Hb A 61%; Hb F 2%; retics 18.9% (695K absolute);
- ANA, SCL 70, RA, ANCA, SSA, SSB HIV, Hep serology all negative
RHC data

- RA: 40
- RV 144/9
- PA 147/49
- PAM 82
- PCWP 17
- TPG: 65
- Fick Index 2.63
Pulmonary hypertension: Deadly vascular disease with enigmatic molecular origins

Enlarged right heart

Narrowing of pulmonary artery
Healthy Artery

1. Endothelial dysfunction
 - External elastic lamina
 - Smooth muscle cell
 - Internal elastic lamina
 - Endothelial cell
 - NO
 - PGl2
 - ET-1
 - TXA2
 - Vasoconstriction

2. Vascular remodeling
 - Inflammatory cell
 - Muscularization / Medial Hypertrophy
 - Intimal Fibrosis

3. Plexiform lesion & In situ Thrombosis
Diagnostic Approach

Is There A Reason to Suspect PAH?
Clinical History (Symptoms, Risk Factors), Exam
Brain Natriuretic Peptide

Cardiomyocyte stretch (pressure or volume)

Ventricular Cardiomyocyte

Pre-Pro-BNP (26-108)

Pro-BNP (1-108)

26 aa signal sequence

NT-Pro-BNP (1-76)

BNP (77-108)

Vasodilation

Natriuresis

RAAS
Doppler Features of PH

- Peak TR velocity measured
- RVSP calculated as $4v^2 + \text{RAP}$
- RAP estimated by degree of collapse of IVC with respiration or “sniff”

Echo predicting PH:
- Sensitivity 79-100 %
- Specificity 60-98 %

Do I Need a RHC?

1. Accuracy
2. Necessary for diagnosis of PAH
3. Contributes prognostic information
4. Allows for provocative maneuvers

PH
Mean PAP ≥25 mm Hg at rest during RHC

PAH
Mean PAP ≥25 mm Hg *plus*
PAWP ≤15 mm Hg *plus*
PVR >3 Wood Units
Cons of RHC

1. Invasive
 ...
 But safe:
 In > 7K RHCs
 - 1% SAEs
 - 0.3% hospitalization
 - 0.06% fatality
 Hoeper et.al. JACC 2006;48:2546-52

2. Limited reimbursement
So what’s the issue?

Lam SP et.al. JACC 2009; 53: 1119–26

So should I cath?

1. What’s the prior probability of PAH?
Clinical classification of PH
(Nice 2013)

1. Pulmonary arterial hypertension
 - Idiopathic PAH
 - Heritable PAH (BMPR2, ALK1)
 - Drug and Toxin induced
 - Associated with:
 • Connective tissue disease
 • Congenital heart disease
 • Portal hypertension
 • HIV infection
 • Schistosomiasis

1'. PVOD/PCH

2. PH with left heart disease
 - Atrial or ventricular
 - Valvular

3. PH with lung diseases/hypoxaemia
 - COPD
 - Interstitial lung disease
 - Sleep-disordered breathing
 - Developmental abnormalities

4. PH due to chronic thrombotic and/or embolic disease
 - CTEPH

5. Miscellaneous
 - Pulmonary hypertension with unclear multifactorial mechanisms
 - Hematologic disorders: myeloproliferative disorders, splenectomy
 - Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis, lymphangioleiomyomatosis, neurofibromatosis, vasculitis
 - Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders
 - Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis
So should I cath?

1. What’s the prior probability of PAH?
2. Likely alternative explanation?
So should I cath?

1. What’s the prior probability of PAH?
2. Likely alternative explanation?
3. How concerning is the echo?
So should I cath?

1. What’s the prior probability of PAH?
2. Likely alternative explanation?
3. How concerning is the echo?
4. Symptoms:
 - Severity
 - Duration
 - Unexplained

In other words, be a doctor.

Lastly, err on the side of doing it: it’s safe, and almost always helpful.
Question #2

How do I choose initial therapy for PAH?
Current therapeutic targets

NO - sGC - cGMP Pathway
- Endothelium
- L-arginine → L-citrulline
- eNOS
- NO
- NO inhalation
- NO synthase
- NO synthase uncoupling
- BH2
- 6R-BH4
- Sildenafil
- Tadalafil
- Riociguat
- sGC
- GTP → cGMP
- cGMP → GMP
- PDE5
- Vasodilation ↓ Proliferation

Prostacyclin Pathway
- NO
- Arachidonic acid
- Prostaglandins
- COX
- Prostacyclin (PGI2)
- Epoprostenol
- Treprostinil
- Iloprost
- Beraprost
- Selexipag
- IP receptor
- AC
- cAMP
- ATP

Endothelin-1 Pathway
- Big Endothelin-1
- ECEs
- Ambrisentan
- Endothelin-1
- ETA receptor
- ETB receptor
- Bosentan
- Macitentan

Therapeutic Options for PAH

<table>
<thead>
<tr>
<th>Non-PAH Targeted</th>
<th>PAH Targeted (FDA approved)</th>
<th>Investigational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>Prostanoids</td>
<td>Prostanoids</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Treprostinil (IV, SC, Inhaled, oral**)</td>
<td>- Beraprost</td>
</tr>
<tr>
<td>Anticoagulants (?)</td>
<td>Inhaled Iloprost</td>
<td>Others</td>
</tr>
<tr>
<td>Calcium Channel Blockers</td>
<td>Selexipag +</td>
<td>- TKI’s</td>
</tr>
<tr>
<td></td>
<td>ERAs</td>
<td>- Rituximab</td>
</tr>
<tr>
<td></td>
<td>Bosentan</td>
<td>- Cicletanine</td>
</tr>
<tr>
<td></td>
<td>Ambrisentan</td>
<td>- Inhaled NO</td>
</tr>
<tr>
<td></td>
<td>Macitentan **</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PDE-5 Inhibitors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sildenafil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tadalafil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riociguat **</td>
<td></td>
</tr>
</tbody>
</table>

** approved 10/2013; + approved 12/2015
Choice of Initial PAH therapy

- Risk Estimation/Disease Severity
- Treatment Choice
- Provider Preference
- Side Effect Profile
- Coverage Status
- Patient Ability
- Patient Support
- Patient Preference
PAH Determinants of Risk

<table>
<thead>
<tr>
<th>Lower Risk</th>
<th>Determinants of Risk</th>
<th>Higher Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Clinical evidence of RV failure</td>
<td>Yes</td>
</tr>
<tr>
<td>Gradual</td>
<td>Progression</td>
<td>Rapid</td>
</tr>
<tr>
<td>II, III</td>
<td>WHO class</td>
<td>IV</td>
</tr>
<tr>
<td>Longer (>400 m)</td>
<td>6MW distance</td>
<td>Shorter (<300 m)</td>
</tr>
<tr>
<td>Minimally elevated</td>
<td>BNP</td>
<td>Very elevated</td>
</tr>
<tr>
<td>Minimal RV dysfunction</td>
<td>Echocardiographic findings</td>
<td>Pericardial effusion, significant RV dysfunction</td>
</tr>
<tr>
<td>Normal/near normal RAP and CI</td>
<td>Hemodynamics</td>
<td>High RAP, low CI</td>
</tr>
</tbody>
</table>

McLaughlin and McGoon. Circulation 2006;114:1417-31
What is the Optimal Treatment Strategy?

Anticoagulate ± Diuretics ± Oxygen ± Digoxin → Acute Vasoreactivity Testing

- Oral CCB
 - Sustained Response
 - Continue CCB
 - Class II-III
 - ERAs or PDE-5 Is (oral)
 - Epoprostenol or Treprostinil (IV)
 - Iloprost (inhaled)
 - Treprostinil (SC)
 - Reassess – consider combo-therapy
 - Investigational Protocols

- Class III-IV
 - Epoprostenol or Treprostinil (IV)
 - Iloprost (inhaled)
 - ERAs or PDE-5 Is (oral)
 - Treprostinil (SC)
 - Atrial septostomy
 - Lung Transplant

Time for a Paradigm Shift?

Current
Sequential combination therapy for deterioration or failure to show improvement with monotherapy

Future (is NOW?)
Up front combination therapy

- PDE5 inhibitors
- Endothelin Receptor Antagonists
- Prostanoids

- Prostanoids
- PDE5 Inhibitors
- Endothelin Receptor Antagonists
Initial Use of Ambrisentan plus Tadalafil in Pulmonary Arterial Hypertension

DOI: 10.1056/NEJMoa1413687
A Combination Therapy vs. Pooled Monotherapy

Hazard ratio, 0.50 (95% CI, 0.35–0.72)
P < 0.001

No. at Risk
Combination therapy: 253 229 186 145 106 71 36 4
Pooled monotherapy: 247 209 155 108 77 49 25 5

6-Minute walk distance — m§
Median (IQR) change from baseline to week 24
Combination therapy: 48.98 (4.63 to 85.75)
Pooled monotherapy: 23.80 (−12.25 to 64.53)
Combination therapy: 27.00 (−14.00 to 63.25)
Pooled monotherapy: 22.70 (−8.25 to 66.00)
P value
Reference < 0.001 < 0.001 0.003
Combination Therapy: Ongoing or Recently Completed Clinical Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Current therapy</th>
<th>Added therapy</th>
<th>Patients (n)</th>
<th>Study duration</th>
<th>Primary end point</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREEDOM-C</td>
<td>Bosentan and/or sildenafil</td>
<td>Treprostinil oral</td>
<td>300</td>
<td>16 weeks</td>
<td>6MWD</td>
</tr>
<tr>
<td>AMBITION</td>
<td>Ambrisentan/tadalafil/combo</td>
<td>Combo vs mono</td>
<td>300</td>
<td>Event-driven</td>
<td>Morbidity/mortality event</td>
</tr>
<tr>
<td>Pfizer</td>
<td>Bosentan</td>
<td>Sildenafil</td>
<td>106</td>
<td>12 weeks</td>
<td>6MWD</td>
</tr>
<tr>
<td>COMPASS-1</td>
<td>Bosentan</td>
<td>Sildenafil</td>
<td>45</td>
<td>Single dose</td>
<td>PVR</td>
</tr>
<tr>
<td>COMPASS-2</td>
<td>Sildenafil</td>
<td>Bosentan</td>
<td>250</td>
<td>Event-driven</td>
<td>Morbidity/mortality event</td>
</tr>
<tr>
<td>COMPASS-3</td>
<td>Bosentan</td>
<td>Sildenafil</td>
<td>100</td>
<td>16 weeks</td>
<td>6MWD</td>
</tr>
<tr>
<td>ATHENA-1</td>
<td>Sildenafil or tadalafil</td>
<td>Ambrisentan</td>
<td>40</td>
<td>24 weeks</td>
<td>PVR</td>
</tr>
<tr>
<td>SERAPHIN</td>
<td>Naïve/PDE-5/PGI/combo</td>
<td>Macitentan</td>
<td>742</td>
<td>Event-driven</td>
<td>Morbidity/mortality event</td>
</tr>
<tr>
<td>PATENT</td>
<td>Naïve/PGI/ERA</td>
<td>Riociguat</td>
<td>462</td>
<td>12 weeks</td>
<td>6MWD</td>
</tr>
<tr>
<td>IMPRES</td>
<td>≥2 current therapies</td>
<td>Imatinib</td>
<td>200</td>
<td>24 weeks</td>
<td>6MWD</td>
</tr>
<tr>
<td>ATPAHSS</td>
<td>Ambrisentan/tadalafil/combo</td>
<td>Combo vs mono</td>
<td>63</td>
<td>36 weeks</td>
<td>RV mass/PVR</td>
</tr>
<tr>
<td>GRIPHON</td>
<td>ERA, PDE5 or both</td>
<td>Selexipag</td>
<td>670</td>
<td>Event-driven</td>
<td>Morbidity/mortality event</td>
</tr>
<tr>
<td>Novartis</td>
<td>Stable PAH therapy</td>
<td>Noilotinib</td>
<td>66</td>
<td>6 months</td>
<td>PVR</td>
</tr>
</tbody>
</table>
Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension

Rajkumar Savai¹,², Hamza M Al-Tamari¹, Daniel Sedding³,⁴, Baktybek Kojonazarov², Christian Muecke¹, Rebecca Teske³, Mario R Capecchi⁵, Norbert Weissmann², Friedrich Grimminger², Werner Seeger¹,², Ralph Theo Schermuly² & Soni Savai Pullamsetti¹,²
Hemodynamic Progression of PAH

CO = \frac{PAP}{PVR}

- Pre-symptomatic/Compensated
- Symptomatic/Decompensating
- Declining/Decompensated
43 year old football coach

- Increasing dyspnea on exertion running up and down sidelines with increasing pain
Chronic Thromboembolic Pulmonary Hypertension (CTEPH)
Riociguat for the Treatment of Pulmonary Arterial Hypertension

Hossein-Ardeschir Ghofrani, M.D., Nazzareno Galiè, M.D., Friedrich Grimminger, M.D., Ekkehard Grünig, M.D., Marc Humbert, M.D., Zhi-Cheng Jing, M.D., Anne M. Keogh, M.D., David Langleben, M.D., Michael Ochan Kilama, M.D., Arno Fritsch, Ph.D., Dieter Neuser, M.D., and Lewis J. Rubin, M.D., for the PATENT-1 Study Group*

DOI: 10.1056/NEJMoa1209655