Oxidative Stress in Chronic Pancreatitis

Pramod Garg, MD
Professor of Gastroenterology,
All India Institute of Medical Sciences,
New Delhi.
CP: Oxidative Stress

• Outline:
 – Insight into development of Chronic Pancreatitis
 – Oxidative Eustress and Oxidative Distress
 – Experimental evidence of oxidative stress
 – Evidence of oxidative stress in Human CP
How does CP develop?
Pancreatitis

Acute pancreatitis

Recurrent acute pancreatitis

Chronic Pancreatitis

20%-30%

50%-90%
• 75 patients with RAP
• 47% developed CP during follow-up

(Garg et al. Clin Gastro Hepatol 2006)
Progression of disease

Ductal changes
Progression of Disease

Parenchymal changes
Progressive model of disease

Paradigm of disease progression

Injury \rightarrow Inflammation \rightarrow Fibrosis
Recurrent \rightarrow Recurrent \rightarrow CP
Oxidative stress in CP

- Oxidative stress could be a link between cellular injury and inflammation
- Not a primary event but a step in the cascade
CP: Etiopathogenesis

Environmental factors

Oxidative stress

Mutations (SPINK1, CFTR, PRSS1, Cathepsin B, CTRC)
CP: Oxidative Stress

- Outline:
 - Oxidative Eustress and Oxidative Distress
 - Experimental evidence of oxidative stress
 - Evidence of oxidative stress in Human CP
Terms

• Redox signaling
• Redox control (Enzymatic and non-enzymatic)
• Redox Medicine
• Oxidative Eustress (physiological)
• Oxidative Distress (pathological)
Redox Mechanisms

- Reduction and Oxidation: essential for cellular functions
- Reactive species:
 - Free radicals: O_2^-, HO$^-$, NO
 - Nonradical: H_2O_2
- Perform important functions
- Oxidative Eustress (physiological)
Redox processes

Oxidative stress

- DNA and RNA oxidation
- Mutations
- Metal ion interactions
- Protein processing, folding, interactions, and trafficking
- Lipid oxidation and signaling
- Glycan modifications
- Redox reactions
- Electrophile reactions
- Sulfane reactions
- Nitration

Exposome

- Nutrition
- Lifestyle and exercise
- Chemical and drugs
- Air pollution
- UV light
- Ionizing radiation
- Microbiome

Genome

Epigenome

Transcriptome

Redox proteome

Redox metabolome

Redox networks, structure, and function

Biological processes
Oxidative Eustress

ROS (Oxidants)

Intracellular signaling

Scavengers

Oxidative Eustress

Antioxidants

Oxidative Distress
CP: Oxidative Stress

- Oxidative Distress:
 - Lipid peroxidation
 - Protein modification
 - DNA/RNA modification
 - Disturbed cellular function
CP: Oxidative Stress

- Regulatory mechanisms to control OS:
- Nrf 2-Keap 1: constitute Genetic antioxidant response element (ARE)
- Exert:
 - Cytoprotection
 - Antioxidant
 - Anti-inflammatory
CP: Oxidative Stress

- Cellular responses to OS:
 - ER stress response: UPR
 - Autophagy, apoptosis
 - NFκβ: inflammation
CP: Oxidative Stress

• Outline:
 – Oxidative Eustress and Oxidative Distress
 – Experimental evidence of oxidative stress
 – Evidence of oxidative stress in Human CP
Oxidative Stress in Pancreatitis

- Endogenous production of ROS:
 - ER stress
 - ER stress → ROS
 - Evidence?
Caerulein induced Pancreatitis
- ER Stress: Up-regulation of ATF6 and PERK pathways
Endogenous ROS

Acinar cells (AR42J cell lines)

Tunicamycin

Caerulein
ROS production: by tunicamycin
ROS production: ↑ by Caerulein
ROS and Antioxidant Response

Nrf2 up-regulation

anti NRF2

Antioxidant response suggestive of OS
CP: Oxidative Stress

- Outline:
 - Oxidative Eustress and Oxidative Distress
 - Experimental evidence of oxidative stress
 - Evidence of oxidative stress in Human CP
CP: Etiopathogenesis

Environmental factors

Oxidative stress

Mutations (SPINK1, CFTR, PRSS1, Cathepsin B, CTRC)
Oxidative stress in CP

- **Sources:**
 - **Exogenous (Environmental):**
 - Alcohol
 - Smoking
 - Diet
 - Xenobiotics
 - **Endogenous**
 - Intracellular: physiological
 - Pathological: ?
Inadequate antioxidant defenses

↑ xenobiotic load

↑ production of free radicals

↑ toxic metabolites overwhelm Phase II

Increased OS

Inflammation

CHRONIC PANCREATITIS

Induction

Xenobiotics

Phase I pathway CYP enzymes

Phase II pathway Glutathione etc.

Attach OH/O: ↑ solubility; compound may become more bioactive

Bio-conjugation/reduction
Genetic mutations in CP

• How genetic mutations may lead to oxidative stress?
Genetic mutations in CP

- *PRSS1, CTRC, CFTR* gene mutations
- Mechanism of injury not well understood
- How mutations lead to inflammation?
Mutations and Oxidative stress

PRSS1, CTRC gene mutations

Unfolded protein response (UPR)

ER stress*

ROS

CP: Etiopathogenesis

Environmental factors

- Oxidative stress
- ER stress
- Mutations (PRSS1, CTRC)
Oxidative stress in CP

• Enough evidence from experimental and human studies:

• ↑ Oxidative stress in CP
Case-control study

- Patients: 127 patients with CP
- Controls: 104 healthy controls
Lipid peroxidation (TBARS, nmoles/ml)

Baseline	One month	Six months
Placebo | Antioxidant

P=0.001
FRAP (μmolesFe$^{+2}$ lib): pre, post and change

P=0.038
Progression of Disease

Q: does oxidative stress play role at this stage?
Case-control study

- 50 Patients with RAP, 50 controls
- Markers of OS:
 - 4-hydroxynonenol (4-HNE),
 - Malondialdehyde (MDA)
- Antioxidant status:
 - Ferric reducing the ability of plasma (FRAP)
 - Glutathione peroxidase (GPX)
 - Vitamin C
Oxidative stress in RAP

• 4-HNE significantly increased in patients with RAP compared with controls (3.03 ± 2.35 vs. 2.12 ± 1.29 ng/ml; p=0.03)

• Antioxidant levels were reduced in RAP compared with healthy controls
 – FRAP (707.0 ± 144.9 vs. 528.8 ± 120.0 µmol/Fe2+ liberated; p=0.001)

(Bopanna et al. Pancreatology 2017)
Q: Does AO supplementation help?
AIIMS study: RCT

CP (n=127)

Intervention Group* Placebo Group

*0.54 g vitamin C, 9000 IU β-carotene, 270 IU vitamin E, 600 µg organic selenium, and 2g methionine in 3 divided doses

• 6 months intervention

(Bhardwaj, Garg et al, Gastroenterology 2009)
Results

Number of painful days per month

P = 0.012

Placebo

Antioxidant
Number of oral analgesics used/month

![Bar chart showing the number of oral analgesics used per month for Placebo and Antioxidant groups.](chart)

- **Placebo**:
 - Previous: 10
 - Post: 5

- **Antioxidant**:
 - Previous: 15
 - Post: 10

P = 0.06
Percentage of Patients who became Pain free

Placebo P<0.001 Antioxidants

Pain free
Not pain free
Long term outcome of Patients

Long-term pain relief with optimized medical treatment including antioxidants and step-up interventional therapy in patients with chronic pancreatitis

Shalimar,* Shallu Midha,* Ajmal Hasan,* 1 Rajan Dhingra,* 2 and Pramod Kumar Garg*

Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India

Response to Step-up therapy

Medical therapy (n=288)
- Response: 52.1%
- No Response: 47.9%

Endoscopic therapy (n=67)
- Response: 16.7%

Surgery (n=26)
- Response: 6.7%

No response at 1 year: 15.4%
Proportion pain free with increasing duration of disease

Proportion of patients pain free

Follow up (years)

N= 208 N= 193 N= 151 N= 80 N= 38
ANTICIPATE Trial: No benefit

- 70 patients, 33 patients on AO
- Characteristics:
 - 70% were alcoholic with a mean alcohol intake of 222 g/d (~ 20 drinks/day)
 - Smoking 21 cigarettes/day
ANTICIPATE Trial

• >85 mg/d of opiates/day addiction and neuropathic pain
• 54% prior intervention, unresponsive disease and probably neuropathic pain
ANTICIPATE Trial

• Results: No benefit with AO
• Why?
Mechanism of Pain

- Late stage, poor functional reserve

- Ductal obstruction, atrophy
 - Little inflammation
 - Oxidative stress +
 - Neuropathic pain
Neuropathic pain
- NK-1, NGF, BDNF
- Substance P, CGRP
CP: Antioxidants

- RCTs
- Meta-analysis

GRADE 1B evidence
Oxidative Stress in CP: Summary

- Oxidative Eustress: physiological
- Oxidative Distress: pathological
- AP ➔ RAP ➔ CP: oxidative stress one of the mechanism of injury/inflammation
- Experimental & clinical evidence of OS
- Antioxidants: Therapeutic benefit +
- Not effective in neuropathic pain