Precision Medicine for Pancreatic Adenocarcinoma

Nathan Bahary MD, PhD
Associate Professor
Medical Director – Pancreatic Cancer Programs
Co-Director – UPMC Pancreatic Cancer Centers of Excellence.
University of Pittsburgh Cancer Institute
Department of Medicine University of Pittsburgh
Division of Molecular Microbiology and Genetics
Facilitates accurate predictions of which treatment and prevention strategies for a particular disease will work in which groups of people.

- **Precision Medicine**: Takes into account individual variability in genes, environment, and lifestyle (individual characteristics) for each person.
 - Includes particular tumor characteristics
 - Milieu (Environment)
 - Mechanisms of Development

- **Personalized Medicine**: Look at a particular individual’s genetic makeup to determine therapy
 - Has been subsumed into ‘Precision Medicine’

Although thought of as a new concept, it is not
- Blood Type donors and recipients
- HLA typing
Pancreatic Adenocarcinoma

The need for Precision Therapeutics

Pancreatic Adenocarcinoma

Risk factors

- **Smoking**
 - Cessation

- **Intraductal papillary mucinous neoplasms (IPMNs)**
 - Screening, although data lacking on efficacy of this strategy in reducing the risk of death

- **Hereditary pancreatic cancer syndrome**
 - BRCA1/2 and PALB2 (Partner and Localizer of BRCA2)
 - BRCA2 is the most common hereditary cause based on its prevalence
 - HNPCC
 - Lifetime risk of 3-4%
 - FAP
 - RR of 3-4X
 - Family history
 - Risk increase with number of affected FDRs
 - 4-5 x RR 1 FDR
 - 6-7 x RR 2 FDR
 - 32 x RR 3FDR
 - Trend to worse prognosis as generations pass

- **Patients with IPMN’s and hereditary concerns are intensively followed by GI and Surgery**
At Diagnosis Is Pancreatic Cancer a Systemic Disease?

• 163 cases with histologically confirmed carcinoma of the head of the pancreas
Neoadjuvant Therapy

• Potential benefits

 – Occult micrometastatic disease may become visible, can save resection morbidity

 – Potential to decrease rate of positive margins

 – Deliver chemotherapy and/or radiation without delay (25-35% adjuvant delayed > 8 weeks)

 – Can be delivered without affecting perioperative mortality / morbidity

 – In vivo drug sensitivity

 – Surrogate Marker trials to speed up new therapeutics
• CA19-9 (sialylated Lewis blood group carbohydrate antigen CA19-9)
• Preoperative levels were available
 – in 1,106 of 1,165 patients with resected pancreatic adenocarcinoma
 – 437 of 461 patients undergoing exploration with/without additional bypass procedure
• CA19-9 was increased in 75.4% of cancer patients.

Preoperative CA19-9 serum levels and survival

Pre-to-postresection CA19-9 changes and survival
CA19-9 response to neoadjuvant therapy predicts OS

Autophagy is Programmed Cell Survival

Stress

Autophagy

Recycling Damaged Materials

Programmed Cell Survival

Apoptosis

Programmed Cell Death

LC3-II

Lysosome
Resectable or Borderline PDA

UPCI 13-074: Randomized Trial
Preoperative Gem/Abraxane +/- HCQ

PG
- Cycle 1:
 - gemcitabine (1000mg/m²)
 - nab-paclitaxel (125mg/m²)
 - D1, D8, D15

PGH
- Hydroxychloroquine (HCQ) 600mg BID
- D1, D8, D15

Surgery
- D70-84

Notes:
- Cycle 1:
 - gemcitabine (1000mg/m²)
 - nab-paclitaxel (125mg/m²)
- Cycle 2:
 - gemcitabine (1000mg/m²)
 - nab-paclitaxel (125mg/m²)
- (R01 CA160417-01A1)
HCQ Results in Decreased CA 19-9

* p = 0.01
HCQ Improves Histopathologic Response

The bar chart shows the percentage of patients with different histopathologic responses to HCQ treatment. The x-axis represents different stages (I, IIA, IIB, III), and the y-axis represents the percentage of patients. The chart compares two groups: PG and PGH.

- For stage I, the PG group has a higher percentage compared to the PGH group.
- For stage IIA, the PG group significantly outperforms the PGH group.
- For stage IIB, the percentage is relatively low for both groups.
- For stage III, the PGH group shows a higher percentage than the PG group.

Overall, the graph indicates that HCQ improves histopathologic response, particularly in stages I and IIA, with PG showing superior results in these stages.
Neoadjuvant trials

- 24 trials listed on the NCI Trials website as of 7/15/2017
 - Immunotherapy or combinations thereof
 - NCT02446093: Neoadjuvant GMCI (Gene Mediated Cytotoxic Immunotherapy) Plus mFOLFIRINOX and Chemoradiation for Non-Metastatic Pancreatic Adenocarcinoma
 - NCT01088789: Vaccine Therapy and Cyclophosphamide in Treating Patients with Pancreatic Cancer
 - NCT02930902: Pembrolizumab and Paricalcitol with or without Chemotherapy in Patients with Pancreatic Cancer That Can Be Removed by Surgery
 - NCT02588443: RO7009789 (CD40 AGONIST) with or without Nab-paclitaxel and Gemcitabine Hydrochloride before and after Surgery in Treating Patients with Newly Diagnosed Pancreatic Cancer That Can Be Removed by Surgery
 - Stromal Agents
 - NCT0248727: PEGPH20, Gemcitabine Hydrochloride, and Nab-Paclitaxel in Treating Patients with Borderline Resectable Pancreatic Cancer
 - NCT02210559: A Phase 1/2 Trial of Gemcitabine Plus Nab-paclitaxel With or Without FG-3019 as Neoadjuvant Chemotherapy in Pancreatic Cancer
 - Radiation
 - NCT02723331: Combination Chemotherapy and Stereotactic Body Radiation Therapy before Surgery Followed by Combination Chemotherapy in Treating Patients with Pancreatic Cancer That Can Be Removed by Surgery
 - Directed Therapies
Targeted Therapy

• Affects function of TGF-β pathway
 – 5 mutations associated with hereditary hemorrhagic telangiectasia
 – 60 mutations in SMAD4 found to cause juvenile polyposis syndrome
 – Loss is seen in 40-60% of pancreatic adenocarcinomas

• Loss associated with metastasis in pancreatic cancer, and poorer prognosis
 – Up to 30% of patients dies with locally destructive disease (<10 mets)
 – 66 patients on autopsy
 • 2/9 SMAD4 loss with zero mets
 • 5/11 (45%) SMAD4 loss with 1-10 mets
 • 33/46 (72%) SMAD4 loss with widely met disease
• Prospective study at 3 academic medical centers of consecutive, unselected, newly diagnosed PDAC patients Ambry Genetics CancerNext Panel (32 genes)

Germline genetic testing in unselected pancreatic ductal adenocarcinoma (PDAC) patients (Abstract 1501)- Peter and Brand et al. ASCO 2017

BRCA2
- Penetrance varies on pedigree
- 3-5 X increased RR
- Because of prevalence of BRCA2, most common cause of hereditary PC

BRCA1

PALP/B

Targeted Therapy: DNA Damage Repair

tumor cells
DNA damage

STOP

PARP

Olaparib

DEATH
Combined Platinum and PARP inhibition

presentation

post treatment AZD2281 (olaparib)
Case Summary AH 54 yo female

- **January 2011**
 - dx’d with triple neg breast adenoca
 - Neoadjuvant A/C f/b T, f/b modified right radical mastectomy
 - 4 negative sentinel nodes, f/b CW XRT
- **July 2012:**
 - weight loss, ascites: ovarian cancer resected stage IIIC
 - BRCA2 testing positive
 - Taxol/Carbo through December 2013
 - maintenance taxol April 2013-August 2013, stopped secondary to worsening abdominal pain
 - CT demonstrated a SMAD4 deleted pancreatic mass, bx : c/w pancreatic primary
 - CA19-9: 2271, CA125 and CEA normal
Case Summary AH 54 yo female

10/2013

1/2014

8/2014

Abraxane
5FU
Cisplatin

Every 2 weeks x 6 cycles

Mitomycin-C
Xeloda

5 months through 8/2014

SBRT 8/2014

CA19-9:

5400 1320 19
Case Summary AF:
A 35-year-old male presented with fatigue, diarrhea and jaundice.

- Referral for abdominal computed tomography (CT) revealed a 2.1 cm pancreatic head mass and confirmed as adenocarcinoma by EUS aspiration. Deemed borderline resectable.

- Treatment
 - neoadjuvant FOLFIRINOX then gemcitabine and nab-paclitaxel for lack of response
 - stereotactic body radiation therapy with 12 gray x 3 fractions (36Gy total).
 - robotic-assisted Whipple was performed. ypT3N1
 - At 11 months, CT imaging showed enlargement of retroperitoneal, left periaortic and retrocaval lymph nodes consistent with metastatic disease. CA 19-9 of 584.9 units/mL.
 - Abraxane/Gemcitabine
 - Foundations Medicine (Cambridge MA) revealed an exon 13 EML4-exon 20 ALK translocation
 - Crizotinib started with stability of CA19-9, but stopped due to hematological toxicity
 - Ceritinib started, excellent response but with eventual progression of disease.
 - Nivolumab added
 - Alectinib – SD then PD
 - New CNS disease, progression – resection of a brain met and laminectomy
 - Lorlatinib (due to circulating L1159M resistance mutation)
Case Summary
Mutations per tumor

- Mismatch-repair proficient colon cancers
- Mismatch-repair deficient colon cancers

Categories:
- Liquid Tumors
- Pediatric Tumors
- Sporadic Adult Solid Tumors
- Mutagen Associated tumors
- Mismatch repair tumors
Study Design

Colorectal Cancers

Cohort A
Deficient in Mismatch Repair (n=25)

Cohort B
Proficient in Mismatch Repair (n=25)

Non-Colorectal Cancers

Cohort C
Deficient in Mismatch Repair (n=21)

- Anti-PD1 (Pembrolizumab) – 10 mg/kg every 2 weeks
- Primary endpoint: immune-related 20-week PFS rate and response rate
- Mismatch repair testing using standard PCR-based test for detection of microsatellite instability

Objective Responses

<table>
<thead>
<tr>
<th></th>
<th>MMR-deficient CRC</th>
<th>MMR-proficient CRC</th>
<th>MMR-deficient non-CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>13</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Objective Response Rate</td>
<td>62%</td>
<td>0%</td>
<td>60%</td>
</tr>
<tr>
<td>Disease Control Rate</td>
<td>92%</td>
<td>16%</td>
<td>70%</td>
</tr>
</tbody>
</table>
• 58 yo gentleman with unresectable cholangiocarcinoma failed all available chemotherapy
• Foundations testing revealed biallelic somatic loss of MLH1
• Pembrolizumab q 2 weeks, within 4 weeks his CA19-9 normalized and in 3 months NED, remains on Pembrolizumab
67 yo gentleman with metastatic PDAC

- FOLFIRINOX for 3 months, stable disease and toxicity
- Abraxane/gemcitabine x 11 months with good response for 9 months then widespread progression (liver/lung/carcinomatosis)
- MSI status by IHC/PCR (now screening all gastric/colon/pancreaticobiliary) demonstrated PMS2 loss.
- Pembrolizumab started 9/2015
Hyaluronan (HA)

- Naturally occurring, linear, megaDalton polysaccharide and major component of the tumor stroma\(^1\)
- HA accumulation increases tumor interstitial gel-fluid pressure, which in turn compresses blood vessels and compromises blood flow\(^2,3\)
- HA accumulation is associated with accelerated tumor growth and is an independent negative predictor of survival in PDA\(^4\)

PEGPH20 (pegvorhyaluronidase alfa)

- A PEGylated form of recombinant human hyaluronidase PH20, which degrades HA and remodels the tumor stroma

Stromal change: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) vs AG in patients (Pts) with untreated, metastatic pancreatic ductal adenocarcinoma (mPDA). Abstract 4008
Stromal change: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) vs AG in patients (Pts) with untreated, metastatic pancreatic ductal adenocarcinoma (mPDA). Abstract 4008
Stromal change: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) vs AG in patients (Pts) with untreated, metastatic pancreatic ductal adenocarcinoma (mPDA). Abstract 4008
CQ Modulates FAP Expression

Chemo + CQ

Chemo alone

Brown: FAP
Chloroquine and anti-PDL1 Enhances Survival in Orthotopic Murine PDA

[Graph showing changes in tumor growth and percent survival]
Autophagy and Checkpoint Inhibition

HCQ D-2

Arm A
Resectable or borderline resectable PDA

Arm B

D1 D8 D15 D22
Gemcitabine Abraxane Cycle 1

D1 D8 D15
Gemcitabine Abraxane Cycle 2

Avelumab every 2 weeks until 1 week prior to surgery

Continue HCQ BID until evening dose prior to surgery

Surgery No less than 2 or more than 6 weeks post chemotherapy
How to restore productive immunosurveillance in pancreatic carcinoma?

1. Release of cancer cell antigens
 - Chemotherapy, vaccines
 - Targeted therapies

2. Cancer antigen presentation
 - CD40 agonists
 - TLR agonists

3. Priming and activation
 - anti-CTLA-4
 - anti-PD-1/PD-L1
 - adoptive T cell therapy
 - cyclophosphamide

4. Trafficking of T cells to tumors

5. T cell infiltration into tumors

6. T cell recognition of cancer cells

7. T cell killing of cancer cells
 - anti-CTLA-4
 - anti-PD-1/PD-L1

adapted from *Immunity* 39:1 2013
Chemoimmunotherapy for the treatment of cancer

Tumor Cell

Chemotherapy

Antigen

Immunogenic Tumor cell Death

Nowak A et al, Cancer Res 2003
Obeid M et al, Nat Med 2007

"Licensed" APC

"Licensed" APC

CD8

CD28

B

Cytokines

CD40

Agonist anti-CD40 mAb

Sotomayor et al, Nat Med, 1999;
Diehl et al, Nat Med, 1999;
French et al, Nat Med, 1999
Schematic Overview of Targeted Agents

- **Vasculature**
 - EndoTag-1
 - Abraxane (?)

- **Stroma**
 - Hyaluronidase (PEGPH20)
 - FG3019 (CTGF Mab)
 - TGF beta modulators

- **Tumor**
 - Abraxane(pinocytosis)
 - KRAS
 - Cell cycle inhibitors
 - ATM
 - Her2
 - Phosphoinositol
 - IGFR
 - Mek/Erk
 - MTOR
 - Akt
 - Y90-hPAM40

- **Immune cells**
 - Hydroxychloroquine
 - GVAX
 - CRS207
 - PD1/PDL1
 - CTLA4